Maximum volume clustering: a new discriminative clustering approach

نویسندگان

  • Gang Niu
  • Bo Dai
  • Lin Shang
  • Masashi Sugiyama
چکیده

The large volume principle proposed by Vladimir Vapnik, which advocates that hypotheses lying in an equivalence class with a larger volume are more preferable, is a useful alternative to the large margin principle. In this paper, we introduce a new discriminative clustering model based on the large volume principle called maximum volume clustering (MVC), and then propose two approximation schemes to solve this MVC model: A soft-label MVC method using sequential quadratic programming and a hard-label MVC method using semi-definite programming, respectively. The proposed MVC is theoretically advantageous for three reasons. The optimization involved in hardlabel MVC is convex, and under mild conditions, the optimization involved in soft-label MVC is akin to a convex one in terms of the resulting clusters. Secondly, the soft-label MVC method pos∗. A preliminary and shorter version has appeared in Proceedings of 14th International Conference on Artificial Intelligence and Statistics (Niu et al., 2011). The preliminary work was done when GN was studying at Department of Computer Science and Technology, Nanjing University, and BD was studying at Institute of Automation, Chinese Academy of Sciences. A Matlab implementation of maximum volume clustering is available from http://sugiyama-www.cs.titech.ac.jp/∼gang/software.html. c ©2013 Gang Niu, Bo Dai, Lin Shang and Masashi Sugiyama. NIU, DAI, SHANG AND SUGIYAMA sesses a clustering error bound. Thirdly, MVC includes the optimization problems of a spectral clustering, two relaxed k-means clustering and an information-maximization clustering as special limit cases when its regularization parameter goes to infinity. Experiments on several artificial and benchmark data sets demonstrate that the proposed MVC compares favorably with state-of-the-art clustering methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Particle Swarm Optimization Algorithm for a Supplier Clustering Problem

This paper presents a fuzzy decision-making approach to deal with a clustering supplier problem in a supply chain system. During recent years, determining suitable suppliers in the supply chain has become a key strategic consideration. However, the nature of these decisions is usually complex and unstructured. In general, many quantitative and qualitative factors, such as quality, price, and fl...

متن کامل

Discriminative Fuzzy Clustering Maximum a Posterior Linear Regression for Speaker Adaptation

We propose a discriminative fuzzy clustering maximum a posterior linear regression (DFCMAPLR) model adaptation approach to compensate the acoustic mismatch due to speaker variability. The DFCMAPLR approach adopts the MAP criterion and a discriminative objective function to estimate shared affine transform and fuzzy weight sets, respectively. Then, through a linear combination of the calculated ...

متن کامل

Maximin Separation Probability Clustering

This paper proposes a new approach for discriminative clustering. The intuition is, for a good clustering, one should be able to learn a classifier from the clustering labels with high generalization accuracy. Thus we define a novel metric to evaluate the quality of a clustering labeling, named Minimum Separation Probability (MSP), which is a lower bound of the generalization accuracy of a clas...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering

In this paper, we introduce an assumption which makes it possible to extend the learning ability of discriminative model to unsupervised setting. We propose an informationtheoretic framework as an implementation of the low-density separation assumption. The proposed framework provides a unified perspective of Maximum Margin Clustering (MMC), Discriminative k -means, Spectral Clustering and Unsu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013